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When fast electrons are used to study matter at subnanometer length scales, it is often necessary to model the
inelastic cross section and the absorptive effect of phonon excitation on elastically scattered electrons. The
inelastic cross section for the excitation of a phonon in a crystal by a fast electron is well modeled by using an
effective absorptive potential. In this paper, the absorption potential for phonon excitation by fast electrons is
rigorously derived from many-body quantum mechanics taking into account correlated atomic motion. This
potential is calculated for a silicon crystal at room temperature from the force constants and dispersion curves
for the crystal. It is shown that the total absorption for a crystal at room temperature predicted by a phonon
model with correlated atomic motion agrees with the Einstein-model potential, based on independent atomic
motions. This suggests that ignoring correlated atomic motion is not likely to contribute to the well-known
quantitative discrepancy in contrast between simulated and experimental transmission electron microscopy
images �the so-called “Stobbs factor”�. The quantum-mechanical formulation allows us to further investigate
the form of the inelastically scattered waves and the nonlocality of the absorption potential in directions both
perpendicular and parallel to the direction of propagation, providing deeper insight into underlying physics of
phonon excitation by fast electrons.
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I. INTRODUCTION

The excitation of phonons by fast electrons has been a
topic of considerable interest for over fifty years1–7 and con-
tinues as a highly active area of research because of its im-
portance to electron microscopy.8–15 Electrons can be fo-
cused into areas less than a square angstrom and interact
strongly with matter, making them ideal for studying nano-
structures on the atomic scale. However, this strong interac-
tion means that both multiple elastic and inelastic-scattering
events contribute to measurements of even the thinnest
samples.16 The theory that describes these scattering pro-
cesses is well known17 but in practice calculations are diffi-
cult to implement. The problem of elastic scattering to all
orders was solved with the Bloch wave18 and multislice
methods.19 However, incorporating inelastic scattering by
phonon excitation,1–7,13,14 plasmon excitation,20 or the ion-
ization of an atom18,21 requires more complex models. The
development and improvement of these models is ongoing.

Early interest in phonon excitation was driven by the ob-
served effects on electron-diffraction patterns. Phonon exci-
tation leads to attenuation of the wave function describing
elastic scattering,4,16 causing attenuation of the intensities of
Bragg peaks in a diffraction pattern. Thermally scattered
electrons produce a diffuse background in diffraction pat-
terns, which contains features such as Kikuchi lines.22

Phonon excitation has come under renewed scrutiny in the
push toward quantitative atomic resolution electron micros-
copy. In transmission electron microscopy �TEM�, for in-
stance, there is still a discrepancy between the contrast of
experimental TEM images and simulations, and the cause
remains unknown.23 This is commonly known as the Stobbs
factor. Predicting TEM images requires an accurate knowl-
edge of the elastic wave function, which is sensitive to the
levels of absorption in the crystal.16 Hence, phonon excita-
tion must be modeled to accurately simulate and interpret

these images.3 A deficiency in the understanding of phonon
scattering is one of several theoretical issues that may poten-
tially contribute to the discrepancy.24 For example, it has
been speculated that an underestimate of the amount of ther-
mal scattering could contribute to the mismatch factor.23 This
has led to attempts to quantify the amount of phonon scat-
tering in TEM �Ref. 11� and to determine the coherence of
these inelastically scattered waves.12 Checking the adequacy
of thermal scattering models used in TEM simulation was a
key motivation for the work presented here.

Electrons that have excited phonons in a crystal can be
measured directly with a high-angle annular dark-field
�HAADF� detector in scanning transmission electron micros-
copy �STEM�. The signal is sensitive to atomic number and
allows for identification of atomic species within a column.25

Recently, the first quantitative comparison between theory
and experiment for a HAADF STEM experiment at atomic
resolution has been achieved.15 A comprehensive under-
standing of phonon scattering provides a solid foundation for
quantitative STEM, which hopefully will become routine.

Two distinct approaches have been developed to calculate
the influence of thermal scattering on TEM and STEM ex-
periments: a model based on an imaginary absorptive poten-
tial and the frozen-phonon model. An imaginary potential,
inserted into the time-independent wave equation for the fast
electron, describes the attenuation of the elastic beam. It can
also be used to calculate the amount of thermally scattered
signal collected by a HAADF detector. The inclusion of an
imaginary potential is rigorously justified from time-
independent quantum mechanics, for instance the coupled-
channel approach of Yoshioka.17 In contrast, the frozen-
phonon model is motivated by the understanding that the
time taken for the electron to traverse the crystal is much
faster than the thermal oscillations of an atom.19 The electron
wave function is calculated for a particular displacement of
atoms, and a measurement is built up by a weighted incoher-
ent sum over different configurations of atomic displace-
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ments. An intuitive interpretation of the frozen-phonon
model would suggest that it predicts elastic scattering from a
crystal with a finite temperature. This is a different physical
picture from that which underlies the quantum-mechanical
�QM� absorptive model, which is based explicitly on phonon
excitation. Both models have been shown to agree with one
another and with experiment,15 provided the single inelastic-
scattering approximation is valid �which is used to imple-
ment the absorptive model�. Hence, we believe that both
approaches will continue to make important contributions to
the understanding and prediction of thermal scattering. Re-
cently, progress has been made on understanding the agree-
ment between the two models using analytic arguments.26

Irrespective of the method chosen to solve the wave equa-
tion for the fast electron in the crystal, a choice must be
made about how the vibrations of the crystal are to be mod-
eled. The most common model used in calculations for elec-
tron microscopy is the Einstein model, which assumes that
each atom vibrates independently. The imaginary potential in
the Einstein model has been known for some time and can be
derived using either semiclassical1 or quantum-mechanical
formulations.2,13 It became a standard part of calculations
when the computational resources became available.4 It is
usually assumed that the vibrations are isotropic, in which
case the absorption potential is parametrized by a single
Debye-Waller factor. Anisotropic vibrations can be included9

and, for example, have a significant effect on the absorptive
potential for aluminum.13 Similarly, the frozen-phonon
model is most commonly implemented with the Einstein
model, assuming each atom vibrates independently. The Ein-
stein model was assumed in the recent investigation of the
agreement between the absorptive and frozen-phonon
models.26

In reality, the thermal motion of the atoms in a crystal is a
collective motion. The motion between atoms is correlated
and the excitations of this collective motion are known as
phonons. In the literature for fast electron scattering, some-
times the term “phonon excitation” is used, even when inde-
pendent atomic vibrations are assumed in the calculation. We
would like to clarify that we will only use the word phonon
to denote a collective vibration of atoms, with the exception
of the term “frozen-phonon model,” which we inherit from
the literature. Vibrational modes are described with the Born-
von Karman model of lattice dynamics and are characterized
by the dispersion curves and force constants of a crystal. It is
known that correlated atomic motion is responsible for struc-
ture in the diffuse background of a diffraction pattern.7 How-
ever, existing calculations of thermal scattering with corre-
lated atom vibrations have not utilized all the phonon
information but require additional levels of approximation,
which can be quite severe. For example, calculations have
been limited to a few Bloch waves,2,27 systematic row
conditions,27 or the Debye model.2,7 There is one notable
exception: a comprehensive treatment of correlated atomic
motion was included in a frozen-phonon calculation, which
predicted banded features in convergent-beam electron dif-
fraction �CBED� patterns that were also observed in experi-
ment, but which are not predicted by the Einstein model.14

However, since the frozen-phonon model is semiclassical, it
remains to be seen how the correlated atomic vibrations

affect the absorption potential within a fully quantum-
mechanical model of thermal scattering.

In this paper, we provide a derivation of the absorption
potential due to phonon excitation from within the frame-
work of many-body quantum mechanics. The derivation is
based on the Born-von Karman theory of lattice dynamics,28

which includes anisotropy in the potential. The form of the
absorptive potential for phonon excitation used in the
quantum-mechanical formulation is known7,29 but has not
been evaluated because of its complexity. Using our derived
expression, absorption potentials are calculated for a silicon
crystal at room temperature, starting with the force constants
and phonon-dispersion curves. This calculation is an advance
on what was previously achieved for calculations of an ab-
sorption potential with collective atomic vibration. This
quantum-mechanical model including correlated atomic mo-
tion is referred to in this paper as the “QM-phonon model.”
The total absorption predicted by the QM-phonon model
agrees with that predicted by the Einstein-model potential.
This suggests that neglecting correlated atomic motion in
thermal scattering models is not likely to contribute to the
Stobbs factor.

The inelastically scattered waves generated by the excita-
tion of a phonon and those predicted by the Einstein model
differ significantly. In the phonon case, a single inelastic
wave can take a contribution from every atom in the crystal,
whereas in the Einstein model each inelastic wave only takes
a contribution from a single atom. This is important because
ultimately the propagation of such waves determines where
the inelastic scattered electrons are in the diffraction pattern,
causing structure in the diffuse background. Recently, the
ionization of an atom in a crystal by a fast electron has been
successfully modeled by the explicit calculation and propa-
gation of inelastic waves.21,30 The form of the waves that
describe electrons after exciting a phonon is derived and
compared to those predicted by the Einstein model.

Electrons scattered to high angles are measured in STEM
with annular detectors. Inelastically scattered electrons make
a more significant contribution to the measured signal than
elastically scattered electrons. The signal measured can be
calculated using an effective absorption potential,31 and if the
angular range is small enough this potential is nonlocal in the
plane perpendicular to propagation.32 We calculate the effec-
tive nonlocal potential for a point detector predicted by the
correlated phonon model and compare it to the Einstein
model. It is shown that correlated atomic motion changes the
nonlocal potential significantly. However, we do not expect
these differences to be observed in STEM experiments since
the angular range spanned by the detector is typically large
enough to ensure the validity of the local approximation.

The nonlocality of the potential in the direction of propa-
gation is not determined by the size of the detector and,
because phonon excitations are delocalized, may be signifi-
cant in this case. This issue has been explored previously7

but it has not been checked by quantitative calculation of the
nonlocal potential. Here we investigate this issue via calcu-
lation.

Electrons with low incident energies, i.e., 1–100 eV, can
be used to perform phonon spectroscopy of surfaces in a
reflection geometry.33,34 The low incident energy used in
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these methods means that the theory that models these
experiments35 is different from the theory presented in this
paper for fast electron scattering.

II. ABSORPTION POTENTIAL

The coupled-channel approach of Yoshioka17 describes
the inelastic scattering of a fast electron incident on a crystal,
starting with the many-body Schrödinger equation. When the
single inelastic-scattering approximation is made in the
Yoshioka formalism, the nonlocal absorptive potential is32

W�r,r�� =
2�m

h2 �
n�0

H0n�r�Hn0�r��kn

�� e2�iK̃·�r−r����kn − K̃�d�K̃dK̃ , �1�

where m is the relativistically corrected mass of the incident
electron and r is a three-dimensional position vector, where
kn is the wave number of the scattered electron. The transi-
tion potentials are

Hn0�r� = �an��n,�e��H��r,�n,�e��a0��n,�e�� , �2�

where �n represents the set of all the atomic coordinates and
�e represents the set of all the electronic coordinates. The
state vector �a0��n ,�e�� represents the initial state of the crys-
tal and �an��n ,�e�� represents the crystal in the nth excited
state. We use the subscript 0 to denote the initial state al-
though this does not necessarily mean the ground state of the
crystal. The interaction term H��r ,�n ,�e� is given by

H��r,�n,�e� = �
l

Hl��r,�n
l ,�e

l �

= �
l
� ZNe2

4��0�r − �n
l �

− �
i=1

Nl e2

4��0�r − �e
l,i�	 ,

�3�

where �n
l denotes the atomic coordinates of the lth atom in

the crystal, and �e
l,i denotes the coordinates of the ith electron

around the lth atom. In practice, the potential used in multi-
slice calculations is projected in the direction of propagation
�denoted by z� over the thickness of a unit cell. However,
care must be taken when projecting the nonlocal potential.
As indicated in Ref. 32, the wave equation that includes a
projected nonlocal potential is only an accurate model if
W�r ,r�� is only nonzero when z and z� belong to the same
slice. This is not valid for phonon excitation because the
interaction of potentials in different slices can contribute to
the excitation of a single inelastic wave. Attempts to estimate
the importance of this effect have been made.7,36 However,
the issue could be decisively resolved if W�r ,r�� could be
calculated. A six-dimensional calculation of W�r ,r�� is not
computationally feasible. For the moment, we will project
the nonlocal potential and defer a discussion of the validity
of the projection until Sec. IV, where the reduced quantity
W�r�=0 ,z ,z�� is calculated. We note that if coherence in the
z direction cannot be ignored, there is a multislice-based
scheme that can take this into account.37

We define the projected nonlocal potential as

W�r�,r�� � =
1

t
�

0

t �
0

t

e−2�iKzW�r,r��e2�iKz�dzdz�, �4�

where t is the thickness of the specimen in the z direction.
The energy lost by a fast electron when it excites a phonon is
typically of the order of meV so it is valid to approximate
kn
K, where K is the wave number of the incident electron.
As shown in Appendix A, the Fourier coefficients of the
projected nonlocal potential are given by

W�q�,q�� � =
2�mK

h2tc
�
n�0

� H0n�q� − K̃ + Kẑ�

�Hn0�K̃ − q�� − Kẑ���K − K̃�d�K�dK̃ , �5�

where tc is the thickness of a unit cell. In the local approxi-
mation, W�q� ,q�� �
W�q�−q�� �.

In the Einstein model each atom is treated as an indepen-
dent harmonic oscillator. In this case, we can write the many-
body crystal wave function as the product of the harmonic-
oscillator wave functions for individual atoms. Using this
ansatz for the crystal wave function and making the local
approximation, the absorption potential becomes13

WH−G =
Kh2

2�mVc
��

lu

e−2�i�H−G�·Rlu	� fe�H − G − K��fe�K��

��e−ME�H − G�2
− e−ME�H − G − K��2

e−MEK�2

�I0�M̃��H − G − K��x��Kx��I0�M̃��H − G − K��y�

��Ky��I0�M̃��H − G − K��z��Kz���d�K�, �6�

where I0 is a modified Bessel function and Vc is the volume
of the unit cell. A Bloch wave expansion has been made, and
G and H are vectors on the reciprocal lattice for the crystal.
The sum over atoms lu is restricted to atoms in the unit cell
because the Bloch wave expansion has been made. We have

also defined K�=K̃−Kẑ. The Debye-Waller factor predicted
by the Einstein model, ME, is given by

ME =
�2�

mA�0
coth� ��0

2kBT
� , �7�

where �0 is the frequency of oscillation for a given atom, mA
denotes the mass of an atom �assuming a single atom type�,
kB is Boltzmann’s constant, and T is the temperature of the
crystal. We have also defined

M̃ =
2�2�

mA�0
sinh−1� ��0

2kBT
� = 2�ME

2 − MT=0
2 , �8�

where MT=0 is given by Eq. �7� calculated when T=0.
The form of the Fourier coefficients of the potential in Eq.

�6� is similar to the standard form typically used in
calculations,4 with the exception of the modified Bessel func-
tions, which appear because the potential has been thermally
averaged with Bose-Einstein statistics. As shown in Fig. 1,
the inclusion of the Bessel functions does not make a large
difference to the absorption potential. In the limit that the
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arguments of the Bessel functions approach zero, the values
of the Bessel functions approach one, and in the other limit,
as the arguments become large, the exponential terms in Eq.
�6� tend to zero faster than the Bessel functions diverge. The
potential in Eq. �6� has one parameter that characterizes the
thermal properties of the crystal: the Debye-Waller factor.
The Einstein-model theory is not used to calculate this pa-
rameter and its value is measured experimentally. The ab-
sorption potential can be generalized to include the aniso-
tropic temperature-factor coefficients, which characterize
anisotropy in the absorption potential.9,38

In Appendix B, it is shown that the nonlocal form of the
Einstein-model potential is given by

W�q�,q�� � =
Kh2

2�mVc
��

l

e−2�i�q�−q�� �·Rl	� fe�q� − K��

�fe�K� − q�� ��e−ME�q� − q�� �2

− e−ME�q� − K��2
e−ME�K� − q�� �2

I0�M̃��q� − K��x�

���K� − q�� �x�I0�M̃��q� − K��y�

���K� − q�� �y�I0�M̃��q� − K��z�

���K� − q�� �z��d�K�. �9�

In practice, it is rare to require the nonlocal form of the
Einstein-model potential but we quote it here for use later in
comparisons to the correlated vibration model.

The Debye-Waller factors have been calculated for el-
emental crystals and ionic compounds,10 using the appropri-
ate phonon-dispersion curves. The Debye-Waller factor is
calculated using

MP =
�2�

mA
�

0

�m

coth� ��

2kBT
��g���

�
	d� , �10�

where � is the angular frequency and g��� is the density of
states obtained from phonon-dispersion curves. The Debye-

Waller factors calculated with this formula are reasonably
close to experiment.

What is still not clear, however, is whether the form of the
potential given in Eq. �6� is adequate to describe absorption
for correlated atomic motion. To derive the form of the po-
tential consistent with phonon excitation we require the
many-body wave functions that describe a crystal with cor-
related atomic motion. In the Born-von Karman model of
lattice dynamics, a system of coupled harmonic oscillators is
represented as a system of uncoupled normal modes.28

Hence, if the crystal wave function is expressed in terms of
normal-mode coordinates, it can be written as a product of
wave functions of uncoupled harmonic oscillators. For com-
parison, the Einstein model also involves a crystal wave
function, which is the product of wave functions for un-
coupled harmonic oscillators, but each harmonic oscillator
represents a particular atom and not, as for collective motion,
a normal mode. The coordinate transformation that relates
the displacement of atom lu in the Lth primitive cell to real
normal coordinates is given by14

uL,lu
=

1
�ns

�
k

ns/2

�
�

3nu � 1
�2

��lu�k,��exp�2�ik · RL

+ �lu��k,��exp�− 2�ik · RL�s1,k,�

+
i

�2
��lu�k,��exp�2�ik · RL − �lu��k,��

�exp�− 2�ik · RL�s2,k,�	 , �11�

where k denotes a point in the first Brillouin zone, � denotes
a mode at that k point, and ns denotes the total number of
atoms in the supercell. The sum over k ranges over half the
points in the first Brillouin zone since we are using real
normal-mode coordinates, denoted by s1 and s2. The param-
eter � ranges from 1 to 3nu, where nu is the number of atoms
in the unit cell. We assume that our atoms are part of an
infinite lattice and that the normal-mode vibrations of this
lattice satisfy periodic boundary conditions defined by a su-
percell. The size of the supercell determines how finely the
first Brillouin zone is sampled. The dispersion curves and the
eigenvectors �lu�k ,�� are calculated from an eigenvalue
equation

�
lu�=1

nu

Dlulu��k� · �lu��k,�� = mA��
2�k��lu�k,�� , �12�

where mA denotes the mass of an atom �assuming a single

atom type�, ���k� is the angular frequency, and Dlulu��k� de-
notes the dynamical matrix. The elements of the dynamical
matrix are force constants.28 The force constants can be fitted
to the dispersion curves obtained from neutron-diffraction
data,39 calculated from atomic force models, or calculated
using density-functional theory.40 To simplify the notation,
we write

FIG. 1. �Color online� A line scan of the Einstein-model absorp-
tion potential in silicon at 293 K, viewed down the �001� zone axis.
The potential was calculated using Eq. �6�, with the Bessel func-
tions, as predicted by the quantum-mechanical derivation, and with-
out the Bessel functions, as predicted by the Hall and Hirsch model.
Note that the potential and all subsequent figures are converted to
volts �V� with a conversion factor of h2 / �2me�.
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f�j,k,�,L,lu� =
ij−1

�2ns

��lu�k,��exp�2�ik · RL

+ �− 1� j−1�lu��k,��exp�− 2�ik · RL� ,

�13�

where j=1,2. Hence, we can write Eq. �11� as

uL,lu
= �

k

ns/2

�
�

3nu

�
j=1

2

f�j,k,�,L,lu�sj,k,�. �14�

To reduce the number of subscripts, we will return to using l
to denote an atom, and use 	 to represent the three indices
j ,� ,k. We now write ul�uL,lu

, and s	�sj,k,�.
To facilitate later calculations, we make the flat Ewald

sphere approximation and write Eq. �5� as

W�q�,q�� � =
2�mK

h2tc
� �

n�0
H0n�q� − K̃ + Kẑ�

�Hn0�K̃ − Kẑ − q�� ���K − K̃�d�K�dK̃



2�mK

h2tc
� �

n�0
H0n�q� − K̃ + Kẑ�

�Hn0�K̃ − Kẑ − q�� ���K − K̃z�
d2K̃�

K̃z
2

dK̃z



2�mK

h2tc

1

K2� �
n�0

H0n�q� − K̃��

�Hn0�K̃� − q�� �d2K̃�. �15�

In real space, the functions Hn0�r� are periodic with a repeat
distance equal to the length of the supercell. Hence, the Fou-
rier components Hn0�q� only take nonzero values when the
argument q coincides with a point on the reciprocal lattice
associated with the supercell. Thus, we only evaluate Eq.

�15� when K̃� lies on this phonon reciprocal lattice, and we
can write the integral as a sum as follows

Wg,h =
h2

2�mtcK

1

As
�

Kx,Ky

��2m�

h2 �2

�
n�0

H0n�h − Ks�

�Hn0�Ks − g�	
Kx
Ky , �16�

where As is the area of the supercell perpendicular to the
zone axis and occurs as a result of the Fourier expansion.
The vectors Ks, g, and h are restricted to the reciprocal lat-
tice associated with the supercell. The term in brackets in Eq.

�16� is evaluated in Appendix C. Using Eq. �C5�, Eq. �16�
becomes

Wg,h =
h2

2�mAstcK
�

Kx,Ky


Kx
Ky

���
l

�
l�

e−2�i�h−Ks�·Rl�e−2�i�Ks−g�·Rl fe�h − Ks�

�fe�Ks − g��A�h − Ks,Ks − g,l,l�� − B�h − Ks,l�

�B�Ks − g,l��� . �17�

The sums over l and l� range over the atoms within a slice of
the crystal as discussed in Appendix A. We have also defined

A�q,q�,l,l�� � ��0�u��e−2�iq·ule−2�iq�·ul���0�u�� , �18�

and

B�q,l� � ��0�u��e−2�iq·ul��0�u�� . �19�

To complete the derivation, we need to evaluate Eqs. �18�
and �19� using the appropriate crystal wave functions. How-
ever, since the sample is in thermal equilibrium with the
environment, there are many possible initial states. The prob-
ability of any particular initial state is determined by Bose-
Einstein statistics in the canonical ensemble. Electrons that
have scattered from different initial states should be summed
incoherently in the detector plane. However, since this cal-
culation cannot be performed in a reasonable time, the mea-
surement can be modeled as though each electron scatters
from a thermally averaged potential. The crystal wave func-
tion is the product of wave functions for individual modes,

��0�s�� = �
	

��0�s	�� . �20�

The partition function in the canonical ensemble is the prod-
uct of the partition functions of individual modes, Z
=�	Z	.41 In Appendix D, it is shown that the thermal aver-
age of Eq. �18� is given by

1

Z�
n

exp�−
En

kBT
�An�h − Ks,Ks − g,l,l��

= �
	

1

Z	
�
n	

exp�−
En	

kBT
�

���n	
�s	��e−2�i��h−Ks�·f	,l+�Ks−g�·f	,l�s	��n	

�s	��

= �
	

exp�− M	� ��h − Ks� · f	,l + �Ks − g� · f	,l�
2� ,

�21�

and that
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1

Z�
n

exp�−
En

kBT
�Bn�h − Ks,l�Bn�Ks − g,l��

= �
	

1

Z	
�
n	

exp�−
En	

kBT
�

���n	
�s	��e−2�i�h−Ks�·f	,ls	��n	

�s	��

���n	
�s	��e−2�i�Ks−g�·f	,l�s	��n	

�s	��

= �
	

exp�− M	� ��h − Ks� · f	,l2�

�exp�− M	� ��Ks − g� · f	,l�
2�

�I0�M̃	��h − Ks� · f	,l���Ks − g� · f	,l�� , �22�

where

M	� =
�2

�	

coth� ��	

2kBT
� , �23�

and

M̃	 =
2�2

�	

sinh−1� ��	

2kBT
� . �24�

We have defined �	=
mA�	

� . The results in Eqs. �21� and �22�
can be substituted back into Eq. �17� to yield

Wh,g =
h2

2�mKAstc
�

Kx,Ky
��

l�
�

l

e−2�i�h−Ks�·Rl�e−2�i�Ks−g�·Rl

�fe�h − Ks�fe�Ks − g��exp�− �h − Ks�T

�F̃�l,l���Ks − g� − exp�− �h − Ks�TF̃�l,l��Ks − g�

�exp�− �h − Ks�TF̃�l�,l���Ks − g�

��
	

I0�M̃	��h − Ks� · f	,l���Ks − g� · f	,l���
Kx
Ky .

�25�

The elements of the matrix F̃�l , l�� are given by

F̃i,i��l,l�� = �
	

M	� f	,l
i f	,l�

i� , �26�

where f	,l
i stands for the ith component of the vector f	,l.

Note the sums over atoms in Eq. �25� only range over atoms
in a slice perpendicular to propagation �one unit cell thick�,
consistent with the projected potential approximation made
in Appendix A. The results of all calculations in this paper
are independent of the slice chosen.

The form of the potential for phonon excitation given in
Eq. �25� is significantly different from that derived in the
Einstein model in Eq. �9�. The potential in Eq. �25� is not
parametrized by a single Debye-Waller factor but instead by

the matrices F̃�l , l��. The matrices that depend on two non-
identical atom locations contain information about the corre-
lations between different atoms. The matrices that depend on

a single atomic location, F̃�l , l�, correspond to those defined

in the anisotropic theory.9 If the Bessel functions are ignored,
the Einstein-model potential is recovered by setting

F̃x,x�l , l�= F̃y,y�l , l�= F̃z,z�l , l�=ME and F̃i,i��l , l��=0 other-
wise.

The absorption potential predicted by the Einstein model
was compared with that predicted by the QM-phonon model
for a silicon crystal viewed down the �001� axis at a tem-
perature of 293 K. The dispersion curves were calculated
using force constants for the dynamical matrix taken from
Ref. 39. Note that there are some sign errors in these matrix
elements. When calculating the total absorption potential, it
is valid to make the local approximation in Eq. �25� by set-
ting Wg,h→Wg−h,0.32 The supercell used for the QM-phonon
calculation was made up of 5�5�5 eight atom cubic unit
cells. The Bessel functions make a negligible contribution to
the phonon calculation, as they did in the Einstein-model
potential, and were not included. The absorption potential
predicted by the QM-phonon model is shown in Fig. 2�a� and
the absorption potential predicted by the Einstein model is
shown in Fig. 2�b�. The line scan shown in Fig. 2�c� indicates
a good agreement between the two models. As we can see in
Table I, the terms in Eq. �25� that depend upon two distinct
atom locations make a small contribution to the potential,
indicating that correlations between different atoms do not
affect the total absorption. The values of these parameters

(a) (b)

(c)

FIG. 2. �Color online� The absorption potential for a silicon
crystal projected down the �001� axis calculated with �a� the QM-
phonon model using Eq. �25� and �b� and with the Einstein model
using Eq. �6�. The temperature of the crystal is 293 K. The phonon
calculation was performed on a supercell of size 5�5�5 cubic
unit cells. The potential along the dashed lines in �a� and �b� is
compared in �c�.
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that depend on a single atom location, shown in Table II,
confirm that for silicon at room temperature an isotropic po-
tential described by the Debye-Waller factor is adequate. As
a consequence of the QM-phonon calculation, we have a
prediction for the Debye-Waller factor that agrees very well
with the experimental measurement.

The agreement shown in Fig. 2 between the Einstein
model and the QM-phonon model for the total absorption
potential suggests that the models will agree when the local
approximation is valid. If, however, the inelastic cross sec-
tion is measured with a detector aperture that covers a small
angular range, then key differences between the Einstein
model and the QM-phonon model become evident. Consider,
for example, the thermally scattered electrons that are scat-
tered to Ks=0. We can calculate the effective potential that
generates this signal by restricting the range of integration in
Eq. �25� to this angle.18 In Fig. 3�a�, the effective nonlocal
potential for scattering to Ks=0 for silicon is plotted as a
function of x and y, for x�=0 and y�=0. The central peak
corresponds to the contribution from the atom located at x
=0 and y=0. All other peaks are nonlocal effects caused by
correlations between this atom and the neighboring atoms.
The peak heights rapidly decrease as the distance between
atoms increases. If only one inelastic transition had been
modeled, this decrease in peak height would not be observed
and, hence, we can see how summing over all the possible
phonon excitation introduces an effective “coherence
length.” The corresponding Einstein potential is plotted in
Fig. 3�b� and as expected only shows a single peak. The
heights and widths of peaks in Fig. 3�a� are determined by

F̃i,i��l , l��.

In STEM, as a rule of thumb, a nonlocal potential is re-
quired when the probe-forming aperture is larger than the
detector aperture.32 However, thermally scattered electrons
are typically measured in STEM at high angles with an an-
nular detector. In most practical circumstances, the area cov-
ered by the annular detector is sufficiently large for the local
approximation to be valid.

III. SCATTERED WAVES PRODUCED BY THE
EXCITATION OF A PHONON

The inelastic waves generated by exciting an indepen-
dently vibrating atom are different from those generated by
exciting a phonon mode. The inelastic wave function pro-
duced by an inelastic-scattering event can be written as17

TABLE I. Fourier components of the absorption potential cal-
culated using Eq. �25� and the contribution from all terms contain-
ing two nonidentical atom sites �l� l��.

G U0,G Contribution from terms l� l�

�0 0 0� 8.43�10−6 −0.02�10−6

�4 4 0� 2.83�10−6 0.01�10−7

TABLE II. The parameters that appear in Eq. �25� that depend
upon a single atom location, calculated for silicon at 293 K. The
phonon modes were calculated on a supercell made up of 5�5
�5 eight atom unit cells. The experimental value of the Debye-
Waller factor is included for comparison with the error given in
brackets.

�Å2�

F̃x,x�l , l� 0.11

F̃y,y�l , l� 0.11

F̃z,z�l , l� 0.11

F̃x,y�l , l� 2.2�10−3

F̃y,z�l , l� 4.2�10−4

F̃x,z�l , l� 1.6�10−3

Exp �Ref. 42� 0.11 �1�

FIG. 3. �Color online� The effective absorption potential,
W�r� ,r�� =0�, for a point detector at Ks=0, calculated for �a� the
correlated phonon model and �b� the Einstein model, for a silicon
crystal viewed down the �001� zone axis. The temperature of the
crystal is 293 K. The size of the phonon supercell was 5�5�5
cubic unit cells.
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n�r� 
 −
2�m

h2 � e2�ikn�r−r��

�r − r��
Hn0�r��0�r��dr�, �27�

where 0�r� is the elastic wave function and n�r� is the
inelastic wave function. We have introduced the vector n
= �. . . ,n	 , . . .� to indicate that a crystal excitation may involve
the excitation of multiple phonon modes. The transition ma-
trix elements, Hn0�q�, in the QM-phonon model are calcu-
lated in Appendix E and are given by

Hn0�q� = �
l

e−2�iq·Rl� h2

2m�
� fe�q��

	

1
�2n	n	!

��− i�2M	� �n	�f	,l · q�n	e−M	� �f	,l · q�2
. �28�

In the QM-phonon model, the transition amplitudes take a
contribution from every atom in the crystal. In contrast, the
transition matrix elements calculated with the Einstein model
only take a contribution from a single atom. They have been
derived in Appendix F and are given by

Hn0�q� = �− i�n1+n2+n3e−2�iq·Rl
h2

2m�
��2M��n1+n2+n3

n1 ! n2 ! n3!

�fe�q�q1
n1q2

n2q3
n3e−M�q2

. �29�

A two-dimensional slice of an Hn0�r� for the QM-phonon
model is shown in Fig. 4�a�. The phonon model Hn0�r� was
calculated for silicon viewed down the �001� zone axis and
the supercell was 5�5�5 eight atom unit cells. The Hn0�r�
shown corresponds to the excitation of the mode labeled by
k= �0.2,−0.2,0.6� Å−1, j=1, �	=9.4�1013 rad s−1 to the
first-excited state with all other modes in the ground state. A
transition potential calculated using the Einstein model is
shown in Fig. 4�b�. The QM-phonon model Hn0�r� has con-
tributions from all atoms in the crystal, and these contribu-
tions are not the same for each atom within the supercell. In
principle a measurement of inelastically scattered electrons
can be simulated by calculating each of the inelastic scat-
tered waves and propagating each to the plane of the detec-
tor, where their intensities are summed incoherently.21 How-
ever, for phonon excitations, the large number of inelastic
waves required makes this calculation impractical.

IV. NONLOCALITY IN THE z DIRECTION

When the nonlocal potential was projected, it was as-
sumed that the contributions of different slices to the excita-
tion of a particular inelastic wave do not add coherently.
However, for phonon excitation this assumption is not nec-
essarily valid. When the coherent contribution of different
slices to a single inelastic wave is included in the calculation
of the absorption potential, the potential becomes nonlocal in
the z direction and the projected potential approximation is
not made. Unlike nonlocality in the x-y plane, nonlocality in
z is not affected by the detector size. It is affected by the sum
over all the possible excitations, which produces a coherence
length similar to that observed in Fig. 3�a�. If this coherence
length is small enough then the local approximation would
be valid.

To gauge the level of coherence in the z direction, the
quantity W�r�=0 , z=0,z�� is calculated with an atom lo-
cated at r�=0 , z=0. We have made a local approximation
in the x and y directions. From this calculation, we obtain a
simple estimate of the importance of coherence of the inelas-
tic waves in the z direction. Figure 5 shows results for a
silicon crystal viewed down the �001� and the �110� zone
axes. For the �001� direction, the contribution to the nonlocal
potential from the atom in the adjacent slice is approximately
an order of magnitude lower than the contribution from the
atom in the slice z=0. For this case, the effective coherence
length is small enough to validate the use of a local potential.
However, for the �110� direction the atom in the adjacent
slice produces a peak approximately half the height of the
peak over the atom at z=0. This could have a measurable
effect on experiments that are sensitive to the thermally scat-
tered signal. Clearly the importance of nonlocality in the z
direction depends on orientation, and most likely also on
crystal type. A rigorous calculation of the effect of nonlocal-
ity in z on STEM and TEM measurements is beyond the
scope of this work and the subject of ongoing investigation.
Nonlocality in z significantly increases the complexity of the
calculation of fast electron scattering so predicting the effect
on experiment is a significant challenge.

(a)

(b)

FIG. 4. The Hn0�r� predicted by the phonon model is shown in
�a� when the mode labeled k= �0.2,−0.2,0.6� Å−1, j=1, �	=9.4
�1013 rad s−1 is excited to the first-excited state. The Hn0�r� pre-
dicted by the Einstein model for the excitation of one harmonic
oscillator to the first-excited state is shown in �b�.
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V. CONCLUSION

A quantum-mechanical derivation of the absorption po-
tential for thermal scattering based on correlated atomic mo-
tion has been presented. It has been shown that the total
absorption predicted by a model with correlated atomic mo-
tion agrees with that predicted by the Einstein model based
on independent atomic motion. This agreement holds when
the local approximation is valid, which occurs when the de-
tector aperture is large. Hence, we conclude that introducing
correlated atomic motion will not affect the predicted con-
trast in simulated TEM images or in STEM HAADF images.
However, the nonlocal potential associated with a small de-

tector aperture is significantly different for the QM-phonon
model as compared to the Einstein model. The inelastic scat-
tered waves predicted by the two models are phenomeno-
logically different since those produced by the Einstein
model only take a contribution from a single atom, whereas
those produced by the phonon model take a contribution
from every atom in the crystal. Nonlocality in the x-y plane
is shown to be important only when the detector aperture is
small. Nonlocality in the z direction has been shown to oc-
cur, depending on crystal type and orientation.

APPENDIX A: PROJECTION OF THE NONLOCAL
POTENTIAL

Let us expand the transition potential given by Eq. �2� as
a sum of contributions from different slices

H0n�r� = �
�

H̃0n
����r� , �A1�

where � ranges over the number of slices in the z direction.
We assume that, for convenience, each slice has the thick-
ness of a unit cell. We write

H̃0n
����r� = �

l�

�an��n,�e��Hl�
� �r,�n

l�,�e
l���a0��n,�e�� , �A2�

where l� ranges only over the atoms in the slice �. The
potential is projected using Eq. �4�. The Fourier coefficients
of the projected nonlocal potential are given by

W�q�,q�� � =� e−2�iq�·r�W�r�,r�� �e2�iq�� ·r�� dr�dr�� =� e−2�iq�·r��1

t
�

0

t �
0

t

e−2�iKzW�r,r��e2�iKz�dzdz�	e2�iq�� ·r�� dr�dr��

=
2�mK

h2t
�
n�0

� ��
0

t� e−2�i�q�·r�−K̃·r+Kz�H0n�r�dr�dz	��
0

t� e−2�i�K̃·r�−q�� ·r�� −Kz��Hn0�r��dr�� dz�	��K − K̃�d�K̃dK̃ .

�A3�

Defining the thickness of a unit cell to be tc and substituting Eq. �A1� into Eq. �A3�, we find

W�q�,q�� � =
2�mK

h2t
�
n�0

� �� e−2�i�q�·r�−K̃·r+Kz��
�
�

z�

z�+tc

H̃0n
����r�dzdr�	

��� e−2�i�K̃·r�−q�� ·r�� −Kz���
��
�

z��

z��+tc

H̃n0
�����r��dz�dr�� 	��K − K̃�d�K̃dK̃ . �A4�

The range of the integration over dz has been restricted to the width of a slice since it is assumed that H̃0n
����r� is localized

within this range. In order to have a potential that is local in the z direction, we must have incoherence in the z direction, which
we enforce by setting �=��. Note that in the Einstein model this is rigorously justified. In the QM-phonon model, the sum
over all the excitations n may introduce an effective coherence length. If this coherence length is less than the width of a unit
cell, the sum over the all the terms where ���� equals zero, validating this step. Making this approximation we have

W�q�,q�� � =
2�mK

h2t
�
�

�
n�0

� �� �
z�

z�+tc

e−2�i�q�·r�−K̃·r+Kz�H̃0n
����r�dzdr�	�� �

z�

z�+tc

e−2�i�K̃·r�−q�� ·r�� −Kz��H̃n0
����r��dz�dr�� 	

���K − K̃�d�K̃dK̃ . �A5�

FIG. 5. �Color online� The nonlocal potential W�r�=0 , z
=0,z�� calculated for silicon at room temperature.
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Now we assume that, having summed over the excited states n, the nonlocal potential for each slice will be the same.
Hence, we only have to calculate the potential for a single slice and multiply by the number of slices N. Since the thickness
of a slice is tc= t /N, we have

W�q�,q�� � =
2�mK

h2tc
�
n�0

� �� �
0

tc

e−2�i�q�·r�−K̃·r+Kz�H̃0n�r�dzdr�	�� �
0

tc

e−2�i�K̃·r�−q�� ·r�� −Kz��H̃n0�r��dz�dr�� 	
���K − K̃�d�K̃dK̃ . �A6�

Since the function H̃0n�r� is localized within the range of
0– tc, the limits of the integration over dz and dz� can be
taken to infinity and we have

W�q�,q�� � =
2�mK

h2tc
�
n�0

� H̃0n�q� − K̃ + Kẑ�

�H̃n0�K̃ − q�� − Kẑ���K − K̃�d�K̃dK̃ .

�A7�

In the main text, we will drop the tilde and write H0n�q�. It is
implicit that the sum over atoms ranges over one slice in the
supercell perpendicular to propagation.

APPENDIX B: NONLOCAL ABSORPTION POTENTIAL
FOR THE EINSTEIN MODEL

In a model where the atoms vibrate independently, we
assume the many-body crystal wave function can be written
as a product of wave functions for each atom:

�a0��n,�e�� = �
l

�a0��n
l ,�e

l �� . �B1�

We can evaluate the terms in Eq. �5� that depend upon n as
follows

�
n�0

H0n�q� − K��Hn0�K� − q�� �

= �
l

�
l�

�a0��n,�e��Hl���
n�0

�an��n,�e���an��n,�e��	
�Hl�

� �a0��n,�e�� = �
l

�
l�

�a0��n,�e��Hl��1 − �a0��n,�e��

��a0��n,�e��Hl�
� �a0��n,�e��

= �
l

�
l�

�a0��n,�e��Hl�Hl�
� �a0��n,�e��

− �
l

�
l�

�a0��n,�e��Hl��a0��n,�e��

��a0��n,�e��Hl�
� �a0��n,�e�� , �B2�

where we have written Hl�=Hl��q�−K� ,�n
l ,�e

l � and Hl�
�

=Hl�
� �K�−q�� ,�n

l� ,�e
l��. Using Eq. �B1� and the orthogonality

of the crystal eigenstates, we find that

�a0��n,�e��Hl��a0��n,�e�� = �a0��n
l ,�e

l ��Hl��a0��n
l ,�e

l �� ,

�B3�

and that

�a0��n,�e��Hl�Hl�
� �a0��n,�e�� =��a0��n

l ,�e
l ��Hl�Hl��a0��n

l ,�e
l �� , if l = l�

�a0��n
l ,�e

l ��Hl��a0��n
l ,�e

l ���a0��n
l�,�e

l���Hl�
� �a0��n

l�,�e
l��� , if l � l�.� �B4�

When we substitute Eqs. �B3� and �B4� into the last line of Eq. �B2�, there is a cancellation for all the terms where l� l�, and
we are left with

�n�0
H0n�q� − K��Hn0�K� − q�� � = �

l

��a0��n
l ,�e

l ��Hl�Hl��a0��n
l ,�e

l �� − �a0��n
l ,�e

l ��Hl��a0��n
l ,�e

l ���a0��n
l ,�e

l ��Hl��a0��n
l ,�e

l �� .

�B5�

Equation �B5� can be evaluated with harmonic-oscillator wave functions in the same manner as Ref. 13 to obtain

W�q�,q�� � =
Kh2

2�mVc
��

l

e−2�i�q�−q�� �·Rl	� fe�q� − K��fe�K� − q�� ��e−ME�q� − q�� �2
− e−ME�q� − K��2

e−ME�K� − q�� �2

�I0�M̃��q� − K��x���K� − q�� �x�I0�M̃��q� − K��y���K� − q�� �y�I0�M̃��q� − K��z���K� − q�� �z��d�K�. �B6�

MARTIN, FINDLAY, AND ALLEN PHYSICAL REVIEW B 80, 024308 �2009�

024308-10



APPENDIX C: PRELIMINARY STEPS IN THE
DERIVATION OF THE ABSORPTION POTENTIAL FOR

PHONON EXCITATION

The atomic coordinates of an atom in a crystal can be
written as the sum of an equilibrium location and a displace-
ment, �n

l =Rl+ul. Similarly, the electronic coordinates can be
rewritten relative to the nuclear coordinate, �e

l,i=�e�
l,i+Rl

+ul. Using these definitions, Eq. �3� becomes

Hn0�r� = �an�u,�e����
l
� ZNe2

4��0�r − �Rl + ul��

− �
i=1

N
e2

4��0�r − ��e�
l,i + Rl + ul��

	�a0�u,�e��� .

�C1�

Using the standard identity

� 1

�r − r��
e2�iq·rdr =

1

��q�2
e2�iq·r�, �C2�

we may substitute Eq. �C2� into Eq. �C1� to obtain

Hn0�q� = �
l

e−2�iq·Rl�an�u,�e���� ZNe2

4�2�0�q�2
e−2�iq·ul

− �
i=1

N
e2

4�2�0�q�2
e−2�iq·��e�

l,i+ul�	�a0�u,�e��� .

�C3�

Assuming that the nuclear and electronic motions are decou-
pled, we write �an�u ,�e���= ��n�u���an���e��� and then integrate
over the electronic coordinates. This gives

2m�

h2 Hn0�q� = �
l

e−2�iq·Rl fe�q���n�u��e−2�iq·ul��0�u�� ,

�C4�

where fe�q� is the electron-scattering factor. Using Eq. �C4�
and repeating the steps in Eq. �B2�, the term in brackets in
Eq. �16� can be evaluated

�2m�

h2 �2

�n�0
H0n�q − Ks�Hn0�Ks − q��

= �
l

�
l�

e−2�i�q−Ks�·Rl�e−2�i�Ks−q��·Rl fe�q − Ks�fe�Ks − q��

��A�q − Ks,Ks − q�,l,l�� − B�q − Ks,l�B�Ks − q�,l�� ,

�C5�

where

A�q,q�,l,l�� � ��0�u��e−2�iq·ule−2�iq�·ul���0�u�� , �C6�

and

B�q,l� � ��0�u��e−2�iq·ul��0�u�� . �C7�

APPENDIX D: THERMAL AVERAGE OF THE
POTENTIAL

To evaluate Eq. �21� we define

En	
= ��	�n	 +

1

2
� , �D1�

Z	 = �
n	

exp�−
En	

kBT
� =

exp�−
��	

2kBT
�

1 − exp�−
��	

kBT
� , �D2�

n	
�s	� = Nn	

e−�1/2��	s	
2
Hn	

���	s	� , �D3�

�	 =
mA�	

�
, �D4�

Hn	
�s	� = �− 1�n	es	

2 dn	

ds	
n	

e−s	
2
, �D5�

Nn	
= ��	

�
�1/4 1

�2n	n	!
. �D6�

For convenience define z	�exp�−
��	

kBT �, where we note z	

�1 and that Z	=
�z	

1−z	
. Using Eqs. �D3� and �D6� we can

write

��n	
�s	��e−2�iqs	��n	

�s	��

= Nn	

2 �
−�

�

e−2�iqs	e−�	s	
2
Hn	

���	s	�Hn	
���	s	�ds	

=
1

��2n	n	!
�

−�

�

exp�− 2�i
q

��	

x	e−x2
Hn	

�x�Hn	
�x�dx ,

�D7�

where we have performed a change in variables given by x
=��	s	. The integral may be evaluated via a standard
result43

�
−�

� dxe−x2
ei�xHn�x�Hm�x�

��2n/22m/2�n ! m!

=�2mm!

2nn!
�i��n−mLm

n−m��2

2
�e−�2/4, �D8�

in which the Lm
��z� are the associated Laguerre polynomials

and the values of m , n are restricted to the integers
0 ,1 ,2 ,3. . ..44 Thus, the amplitude for a particular mode ap-
pearing in Eq. �21� is
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��n	
�s	��e−2�i�q·f	,l+q�·f	,l�s	��n�s	�� = exp�−

�2

�	

�q · f	,l + q� · f	,l�
2�Ln	

0 �2�2

�	

�q · f	,l + q� · f	,l�
2� . �D9�

Taking the thermal average of Eq. �D9� we find

1

Z	
�
n	

exp�−
En	

kBT
�exp�−

�2

�	

�q · f	,l + q� · f	,l�
2�Ln	

0 �2�2

�	

�q · f	,l + q� · f	,l�
2�

= �1 − z	�exp�−
�2

�	

�q · f	,l + q� · f	,l�
2��

n	

z	
n	Ln	

0 �2�2

�	

�q · f	,l + q� · f	,l�
2�

=
1 − z	

1 − z	

exp�−
�2

�	

�q · f	,l + q� · f	,l�
2�exp�−

2�2

�	

�q · f	,l + q� · f	,l�
2 z	

1 − z	

�
= exp�−

�2

�	

�q · f	,l + q� · f	,l�
2� 2z	

1 − z	

+ 1�	 = exp�−
�2

�	

1 + z	

1 − z	

�q · f	,l + q� · f	,l�
2�

= exp�− �2 �

m�	

coth� ��	

2kBT
��q · f	,l + q� · f	,l�

2	 = exp�− M	� �q · f	,l + q� · f	,l�
2� , �D10�

where M	� is given by

M	� = �2 �

mA�	

coth� ��	

2kBT
� . �D11�

The step from the second line to the third line in Eq. �D10�
involved the standard result44

�
n=0

�

Ln
��x�zn =

1

�1 − z��+1exp�−
xz

1 − z
�, �z� � 1.

�D12�

Hence, substituting Eq. �D10� into Eq. �21� we obtain

1

Z�
n

exp�−
En

kBT
�An�h − Ks,Ks − g,l,l��

= �
	

1

Z	
�
n	

exp�−
En	

kBT
�

���n	
�s	��e−2�i��h−Ks�·f	,l+�Ks−g�·f	,l�s	��n	

�s	��

= �
	

exp�− M	� ��h − Ks� · f	,l + �Ks − g� · f	,l�
2� .

�D13�

To evaluate Eq. �22�, we start by using Eq. �D8� to write

1

Z	
�
n	

exp�−
En	

kBT
�Bn�q,l�Bn�q�,l�� =

1 − z	

�z	
�
n	

�z	z	
n	 exp�−

�2

�	

�q · f	,l�2	Ln	

0 �2�2

�	

�q · f	,l�2	
�exp�−

�2

�	

�q� · f	,l��
2	Ln	

0 �2�2

�	

�q� · f	,l��
2	 = �1 − z	�exp�−

�2

�	

�q · f	,l�2	
�exp�−

�2

�
�q� · f	,l��

2	�
n	

z	
n	Ln	

0 �2�2

�	

�q · f	,l�2	Ln	

0 �2�2

�	

�q� · f	,l��
2	 = �1 − z	�exp�−

�2

�	

�q · f	,l�2	
�exp�−

�2

�	

qj�
2� 1

1 − z	

exp�−
�2

�	

�q · f	,l�2 2z	

1 − z	
	exp�−

�2

�	

�q� · f	,l��
2 2z	

1 − z	
	I0� 2�z	

1 − z	

�2�2

�	

�q · f	,l�22�2

�	

�q� · f	,l��
2	

= exp�−
�2

�	

�q · f	,l�21 + z	

1 − z	
	exp�−

�2

�
�q� · f	,l��

21 + z	

1 − z	
	I0� 2�z	

1 − z	

2�2

�	

��q · f	,l����q� · f	,l���	
= exp�− M	� �q · f	,l�2exp�− M	� �q� · f	,l��

2I0�4�2/�	1/
1
�z

− �z��q · f	,l����q� · f	,l���	
= exp�− M	� �q · f	,l�2exp�− M	� �q� · f	,l��

2I0�2�2/�	��q · f	,l����q� · f	,l���/sinh� ��	

2kBT
�	 . �D14�
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In the step from the second line to the third line, the sum was
performed using the standard result44

�
n=0

�
n!

��1 + m + n�
znLn

m�x�Ln
m�y�

=

exp�− �x + y�
z

1 − z
	

1 − z

Im�2�xy
�z

1 − z
�

�xyz�m/2 , �z� � 1.

�D15�

Hence, using Eqs. �D14� and �24� we can evaluate Eq. �22�
as follows

1

Z�
n

exp�−
En

kBT
�Bn�h − Ks,l�Bn�Ks − g,l��

= �
	

1

Z	
�
n	

exp�−
En	

kBT
�

���n	
�s	��e−2�i�h−Ks�·f	,ls	��n	

�s	��

���n	
�s	��e−2�i�Ks−g�·f	,l�s	��n	

�s	��

= �
	

exp�− M	� ��h − Ks� · f	,l2�

�exp�− M	� ��Ks − g� · f	,l�
2�

�I0�M̃	��h − Ks� · f	,l���Ks − g� · f	,l�� , �D16�

where

M̃	 =
2�2

�	

sinh−1� ��	

2kBT
� . �D17�

APPENDIX E: DERIVATION OF THE Hn0 FOR THE
QM-PHONON MODEL

In normal-mode coordinates the many-body wave func-
tion can be factorized in terms of normal-mode wave func-
tions, as given by Eq. �20�. Hence, Eq. �C4� becomes

Hn0�q� = �
l
� h2

2m�
� fe�q�e−2�iq·Rl

��
	

��n�s	��e−2�i�q·f	,l�s	��0�s	�� . �E1�

The crystal wave functions are given by Eq. �D3�. Using the
standard result in Eq. �D8� it is easy to show that

��n	
�s	��e−2�i�q·f	,l�s	��0�s	�� =

1
�2n	n	!

�− i�2M	� �n	

��q · f	,l�n	e−M	� �q · f	,l�
2
.

�E2�

Substituting Eq. �E2� into Eq. �E1� gives

Hn0�q� = �
l

e−2�iq·Rl� h2

2m�
� fe�q��

	

1
�2n	n	!

�− i�2M	� �n	

��q · f	,l�n	e−M	� �q · f	,l�
2
. �E3�

APPENDIX F: DERIVATION OF THE Hn0 FOR THE
EINSTEIN MODEL

In the Einstein model, each nucleus is located in a har-
monic potential well. Assuming an isotropic potential, the
atomic wave function for the nuclear coordinates factorizes
into a product of wave functions for three orthogonal direc-
tions, each of which has the standard harmonic-oscillator
wave-function form

��0�u�� = ��0�u1����0�u2����0�u3�� , �F1�

where u denotes the displacement of the atom from its equi-
librium position. Hence, Eq. �C4� becomes

Hn0�q� = � h2

2m�
� fe�q�e−2�iq·Rl�

i

��n�ui��e−2�iqiui��0�ui�� .

�F2�

The crystal wave functions ��0�ui�� are harmonic-oscillator
wave functions and hence using the same steps as in Appen-
dix E we find

Hn0�q� = �− i�n1+n2+n3e−2�iq·Rl
h2

2m�

���2M��n1+n2+n3

n1 ! n2 ! n3!
fe�q�q1

n1q2
n2q3

n3e−M�q2
. �F3�
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